|
Graph Framework
|
Dispersion function documentation for the xrays RF Ray tracing code.
This page documents the types of dispersion functions available. As a ray moves through the plasma it must remain a solution of these functions. For a fixed wave frequency \(\omega \), the dispersion function dictates how the wave number \(\vec{k}\) and ray trajectory \(\vec{x}\) interact.
| Symbol | Unit | Description |
|---|---|---|
| \(c \) | \(\frac{m}{s}\) | Speed of light. |
| \(m_{e}\) | \(kg \) | Electron mass |
| \(t_{e}\) | \(K \) | Electron temperature |
| \(n_{e}\) | \(m^{-3}\) | Electron Density |
| \(q \) | \(C \) | Fundamental Charge |
| \(\vec{B}\) | \(T \) | Magnetic field |
| \(\epsilon_{0}\) | \(\frac{F}{m}\) | Vacuum permittivity |
| \(k_{B}\) | \(\frac{J}{K}\) | Boltzmann constant |
| \(\omega_{pe}\) | \(s^{-1}\) | Electron Plasma Frequency \(\omega_{pe}=\frac{n_{e}q^{2}}{\epsilon_{0}m_{e}c}\) |
| \(\omega_{ce}\) | \(s^{-1}\) | Electron Cyclotron Frequency \(\omega_{ce}=\frac{q\left|\vec{B}\right|}{m_{e}}\) |
| \(\omega_{h}\) | \(s^{-1}\) | Upper Hybrid Frequency \(\omega_{h}^{s}=\omega_{pe}^{2}+\omega_{ce}^{2}\) |
| \(\omega_{r}\) | \(s^{-1}\) | Right cutoff Frequency \(\omega_{r}=\frac{1}{2}\left(\omega_{ce}+\sqrt{\omega^{2}_{ce}+4\omega_{pe}^{2}}\right)\) |
| \(\omega_{l}\) | \(s^{-1}\) | Left cutoff Frequency \(\omega_{r}=\frac{1}{2}\left(-\omega_{ce}+\sqrt{\omega^{2}_{ce}+4\omega_{pe}^{2}}\right)\) |
| \(v_{th}\) | \(\frac{m}{s}\) | Thermal velocity \(v_{th}=\sqrt{\frac{k_{B}t_{e}}{m_{e}}}\) |
| \(\vec{n}\) | \(1 \) | \(n=\frac{\vec{k}c}{\omega}\) |
The dispersion functions use normalized quantities for frequency \(\omega \) and time \(t \). These are scaled to the speed of light \(c \).
| Symbol | Real Unit | Modified | Modified Unit | Description |
|---|---|---|---|---|
| \(\omega \) | \(s^{-1}\) | \(\omega'=\frac{\omega}{c}\) | \(m^{-1}\) | Wave frequency |
| \(\vec{k}\) | \(m^{-1}\) | \(\vec{k}\) | \(m^{-1}\) | Wave number |
| \(t \) | \(s \) | \(t'=tc \) | \(m \) | Time |
| \(\vec{x}\) | \(m \) | \(\vec{x}\) | \(m \) | Position |
| \(v_{p}=\frac{\omega}{k}\) | \(\frac{m}{s}\) | \(v'_{p}=\frac{\omega'}{k}\) | \(1 \) | Phase velocity |
| \(v_{g}=\frac{\partial\omega}{\partial k}\) | \(\frac{m}{s}\) | \(v'_{g}=\frac{\partial\omega'}{\partial k}\) | \(1 \) | Group velocity |
From any dispersion function, the wave propagation equations are obtained from derivatives of the dispersion relation.
\begin{equation}\frac{\partial\vec{x}}{\partial {t}}=-\frac{\frac{\partial D}{\partial\vec{k}}}{\frac{\partial D}{\partial\omega}}\end{equation}
\begin{equation}\frac{\partial\vec{k}}{\partial {t}}=\frac{\frac{\partial D}{\partial\vec{x}}}{\frac{\partial D}{\partial\omega}}\end{equation}
RF waves are traced by integrating this system of equations.
The following dispersion functions are available in xrays.
This dispersion function represents a wave in a vacuum.
\begin{equation}D\left(\vec{x},\vec{k},\omega\right)=\frac{\vec{k}\cdot\vec{k}}{\omega^{2}}-1\equiv 0 \end{equation}
It has no resonances or cutoffs.
This dispersion function now accounts for how occupations in the plasma propagate.
\begin{equation}D\left(\vec{x},\vec{k},\omega\right)=\omega_{pe}+\frac{3}{2}\vec{k}\cdot\vec{k}v^{2}_{th}-\omega^{2}\equiv 0 \end{equation}
It has no resonances. Waves cannot propagate below \(\omega_{pe}\) and \(v_{g}\) can never exceed \(v_{th}\).
This dispersion function represents a wave with a \(\vec{E}_{1}||\vec{B}_{0}\). That means the electric field occilates parallel to the magnetic field.
\begin{equation}D\left(\vec{x},\vec{k},\omega\right)=1-\frac{\omega^{2}_{pe}}{\omega^{2}}-\vec{n}_{\perp}\cdot\vec{n}_{\perp}\equiv 0 \end{equation}
This wave is cut off below \(\omega_{pe}\).
This dispersion function represents a wave with a \(\vec{E}_{1}\perp\vec{B}_{0}\). That means the electric field occilates perpendicular to the magnetic field.
\begin{equation}D\left(\vec{x},\vec{k},\omega\right)=1-\frac{\omega_{pe}^2}{\omega^{2}}\frac{\omega^{2}-\omega_{pe}^2}{\omega^{2}-\omega_{h}^2}-\vec{n}_{\perp}\cdot\vec{n}_{\perp}\equiv 0 \end{equation}
This mode has This wave has two branches. One branch is cannot not propagate below the \(\omega_{r}\) cutoff. The other branch cannot not propagate below the \(\omega_{l}\) cutoff. As the wave approaches the upper hybrid frequency, wave propagation stops as the wave number approaches \(\left|\vec{k}\right|\rightarrow\infty \).
This dispersion function represents a wave in a cold plasma medium.
\begin{equation}D\left(\vec{x},\vec{k},\omega\right)=det\left(\vec{\epsilon}+\vec{n}\vec{n}-\vec{n}\cdot\vec{n}\vec{I}\right)\equiv 0 \end{equation}
The quantity \(\vec{\epsilon}\) is the dielectric tensor. Using Onsager symmetries, this tensor is defined as
\begin{equation}\vec{\epsilon}=\left(\begin{array}{ccc}\epsilon_{11}&\epsilon_{12}&0\\-\epsilon_{12}&\epsilon_{11}&0\\0&0&\epsilon_{33}\end{array}\right)\end{equation}
where
\begin{equation}\epsilon_{11}=1-\sum_{s}\frac{\frac{\omega^{2}_{p}}{\omega^{2}}}{1-\frac{\Omega^{2}_{c}}{\omega^{2}}}\end{equation}
\begin{equation}\epsilon_{12}=-i\sum_{s}\frac{\frac{\Omega_{c}}{\omega}\frac{\omega^{2}_{p}}{\omega^{2}}}{1-\frac{\Omega^{2}_{c}}{\omega^{2}}}\end{equation}
\begin{equation}\epsilon_{33}=1-\sum_{s}\frac{\omega^{2}_{p}}{\omega^{2}}\end{equation}
Note here we are including the plasma frequency for ions as well. This dispersion function is effectively a super position of the O-Mode and X-Mode dispersion functions and as such has the same cutoffs and resonances.
This section is intended for code developers and outlines how to create new dispersion functions. New dispersion functions can be created from a subclass of dispersion::dispersion_function or any other existing dispersion_function class and overloading class methods. For convenience the dispersion::physics class contains several defined physical constants.
When a new dispersion function is subclassed from dispersion::dispersion_function an implementation must be provided for the pure virtual method dispersion::dispersion_function::D.