@brief KORC derived type that contains information about a given Gamma distribution function @f$f_\Gamma(x,\kappa,\theta)@f$. @details We write a given Gamma distribution function in terms of its shape factor @f$\kappa@f$ and scale factor @f$\theta@f$, so that:
@f$f_\Gamma(x,\kappa,\theta) = \frac{1}{\Gamma(\kappa) \theta^\kappa}x^{\kappa-1}\exp{\left(-x/\theta\right)}@f$.
Type | Visibility | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|---|
real(kind=rp), | public | :: | min_energy | ||||
real(kind=rp), | public | :: | max_energy | ||||
real(kind=rp), | public | :: | min_p | ||||
real(kind=rp), | public | :: | max_p | ||||
real(kind=rp), | public | :: | k | ||||
real(kind=rp), | public | :: | t |
TYPE, PRIVATE :: GAMMA_PARAMS
REAL(rp) :: min_energy !< Minimum energy of sampled @f$f_\Gamma(x,\kappa,\theta)@f$ in MeV.
REAL(rp) :: max_energy !< Maximum energy of sampled @f$f_\Gamma(x,\kappa,\theta)@f$ in MeV.
REAL(rp) :: min_p !< Minimum momentum of sampled @f$f_\Gamma(x,\kappa,\theta)@f$.
REAL(rp) :: max_p !< Maximum momentum of sampled @f$f_\Gamma(x,\kappa,\theta)@f$.
REAL(rp) :: k !< Shape factor @f$\kappa@f$.
REAL(rp) :: t !< Scale factor @f$\theta@f$.
END TYPE GAMMA_PARAMS