V3FIT
Main Page
Related Pages
Modules
Modules List
Module Members
All
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
Functions/Subroutines
a
b
c
d
e
f
g
h
i
l
m
o
p
r
s
t
u
v
w
y
Variables
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
z
Data Types List
Data Types List
Data Types
Class Hierarchy
Data Fields
All
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
r
s
t
u
v
w
x
y
z
~
Functions/Subroutines
a
b
c
d
e
f
g
i
l
m
n
p
r
s
t
u
v
x
y
~
Variables
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
r
s
t
u
v
w
x
y
z
Files
File List
File Members
All
b
c
g
i
l
m
n
p
t
v
w
Functions/Subroutines
b
c
g
i
m
p
t
v
w
Variables
Enumerations
Macros
•
All
Classes
Namespaces
Files
Functions
Variables
Enumerations
Macros
Pages
LIBSTELL
Sources
Pspline
dnherm1.f
1
subroutine
dnherm1(x,nx,fherm,ilinx,ier)
2
C
3
C create a data set for Hermite interpolation, based on simple
4
C numerical differentiation using the given grid.
5
C
6
C 1d routine
7
C
8
C input:
9
C
10
integer
nx
! array dimensions
11
real
x(nx)
! x coordinate array
12
real
fherm(0:1,nx)
! data/Hermite array
13
C
14
C fherm(0,i) = function value f at x(i) **on input**
15
C
16
C fherm(1,i) = derivative df/dx at x(i) **on output**
17
C
18
C addl output:
19
C ilinx=1 if x is "evenly spaced" ier=0 if no errors
20
C
21
C ** x must be strict ascending **
22
C
23
C----------------------------
24
C
25
ztol=1.0e-3
26
call
splinck(x,nx,ilinx,ztol,ier)
27
if
(ier.ne.0)
then
28
write
(6,*)
'?dnherm1: x axis not strict ascending.'
29
return
30
endif
31
C
32
do
ix=1,nx
33
c
34
c x div. diffs in vicinity
35
c
36
ixp=min(nx,ix+1)
37
ixm=max(1,ix-1)
38
zd=(fherm(0,ixp)-fherm(0,ixm))/(x(ixp)-x(ixm))
39
c
40
fherm(1,ix)=zd
41
enddo
42
C
43
return
44
end
Generated on Thu Mar 5 2020 15:49:24 for V3FIT by
1.8.17