Stellarator-Tools
reconstruction::reconstruction_class Type Reference

Base class containing all the data needed to reconstruct a model. More...

Public Member Functions

FINAL reconstruction_destruct
 
PROCEDURE get_k_use => reconstruction_get_k_use
 
PROCEDURE get_exp_dg2 => reconstruction_get_exp_dg2
 
PROCEDURE get_exp_g2 => reconstruction_get_exp_g2
 
PROCEDURE get_g2 => reconstruction_get_g2
 
PROCEDURE get_lastg2 => reconstruction_get_lastg2
 
PROCEDURE get_dg2 => reconstruction_get_dg2
 
PROCEDURE eval_e => reconstruction_eval_e
 
PROCEDURE eval_f => reconstruction_eval_f
 
PROCEDURE eval_jacobians => reconstruction_eval_jacobians
 
PROCEDURE eval_step => reconstruction_eval_step
 
PROCEDURE sl_step => reconstruction_sl_step
 
PROCEDURE seg_step => reconstruction_seg_step
 
PROCEDURE lm_step => reconstruction_lm_step
 
PROCEDURE lm_rootfind => reconstruction_lm_rootfind
 
PROCEDURE lm_function => reconstruction_lm_function
 
PROCEDURE step => reconstruction_step
 
PROCEDURE try_step => reconstruction_try_step
 
PROCEDURE eval_sem => reconstruction_eval_sem
 
PROCEDURE invert_matrix => reconstruction_invert_matrix
 
PROCEDURE write => reconstruction_write
 
PROCEDURE write_step1 => reconstruction_write_step1
 
PROCEDURE write_step2 => reconstruction_write_step2
 
GENERIC write_step => write_step1, write_step2
 
PROCEDURE restart => reconstruction_restart
 
PROCEDURE sync_state => reconstruction_sync_state
 
PROCEDURE sync_svd => reconstruction_sync_svd
 
PROCEDURE sync_parent => reconstruction_sync_parent
 

Public Attributes

integer step_type = reconstruction_no_step_type
 Type descriptor of the boundry type for the lower(1) and upper(2) ranges. More...
 
real(rprec) step_max
 Maximum number of reconstruction steps. More...
 
logical use_central = .false.
 Controls if central differencing is used.
 
integer current_step = 0
 Counter to track the step number.
 
integer last_para_signal = 0
 Index of the last parallelable signal.
 
real(rprec), dimension(:,:), pointer e => null()
 Array of all e vectors for each reconstruction step. More...
 
real(rprec), dimension(:,:), pointer f => null()
 Array of all f vectors for each reconstruction step. The f vector contains the initial value of the derived parameter.
 
real(rprec), dimension(:,:), pointer jacobian => null()
 The normalized jacobian for the current step.
 
real(rprec), dimension(:,:), pointer derived_jacobian => null()
 The normalized derived jacobian for the current step.
 
real(rprec), dimension(:,:), pointer hessian => null()
 The normalized hessian for the current step.
 
real(rprec), dimension(:), pointer gradient => null()
 The normalized gradient for the current step.
 
real(rprec), dimension(:,:), pointer delta_a => null()
 The normalized parameter step for each sigular value.
 
real(rprec), dimension(:), pointer j_svd_w => null()
 The matrix of singular value decomposition singular values.
 
real(rprec), dimension(:,:), pointer j_svd_u => null()
 The U matrix of singular value decomposition.
 
real(rprec), dimension(:,:), pointer j_svd_vt => null()
 The tansposed V matrix of singular value decomposition.
 
real(rprec), dimension(:), pointer delta_a_len => null()
 The normalized step length for each sigular value.
 
real(rprec), dimension(:), pointer svd_w => null()
 The singular values used in inverting parameter covariance matrix.
 
real(rprec), dimension(:), pointer exp_g2 => null()
 The expected g^2 for each reconstruction step.
 
real(rprec), dimension(:), pointer step_size => null()
 The normalized step size for each reconstruction step.
 
integer, dimension(:), pointer num_sv => null()
 The number of sigular values used for each reconstruction step.
 
real(rprec) cut_svd
 Cutoff value for relative singular values. More...
 
real(rprec) cut_eff
 Cutoff value for expected step efficiency. More...
 
real(rprec) cut_marg_eff
 Cutoff value for expected marginal step efficiency. More...
 
real(rprec) cut_delta_a
 Cutoff value for expected step size. More...
 
real(rprec) cut_dg2
 Cutoff value for expected change in g^2. More...
 
real(rprec) cut_inv_svd
 Cutoff value for pseudo inverse singular values. More...
 
real(rprec), dimension(:,:), pointer lm_ratio => null()
 Ratio of singular values to the Levenberg-Marquardt lambda.
 
real(rprec), dimension(:,:), pointer last_values => null()
 Last signals.
 

Detailed Description

Base class containing all the data needed to reconstruct a model.

Member Data Documentation

◆ cut_delta_a

real (rprec) reconstruction::reconstruction_class::cut_delta_a

Cutoff value for expected step size.

See also
v3fit_input::cut_delta_a

◆ cut_dg2

real (rprec) reconstruction::reconstruction_class::cut_dg2

Cutoff value for expected change in g^2.

See also
v3fit_input::cut_dg2

◆ cut_eff

real (rprec) reconstruction::reconstruction_class::cut_eff

Cutoff value for expected step efficiency.

See also
v3fit_input::cut_eff

◆ cut_inv_svd

real (rprec) reconstruction::reconstruction_class::cut_inv_svd

Cutoff value for pseudo inverse singular values.

See also
v3fit_input::cut_inv_svd

◆ cut_marg_eff

real (rprec) reconstruction::reconstruction_class::cut_marg_eff

Cutoff value for expected marginal step efficiency.

See also
v3fit_input::cut_marg_eff

◆ cut_svd

real (rprec) reconstruction::reconstruction_class::cut_svd

Cutoff value for relative singular values.

See also
v3fit_input::cut_svd

◆ e

real (rprec), dimension(:,:), pointer reconstruction::reconstruction_class::e => null()

Array of all e vectors for each reconstruction step.

See also
signal::signal_get_e

◆ step_max

real (rprec) reconstruction::reconstruction_class::step_max

Maximum number of reconstruction steps.

See also
v3fit_input::nrstep

◆ step_type

integer reconstruction::reconstruction_class::step_type = reconstruction_no_step_type

Type descriptor of the boundry type for the lower(1) and upper(2) ranges.

Possible values are:

The documentation for this type was generated from the following file: