program main !! @note Main function of KORC. @endnote !! The main program contains the calls to the main functions and subroutines. !! Also, it contains the variables that control !! the behavior of the core of KORC and all other external/optional modules. use korc_types use korc_units use korc_hpc use korc_HDF5 use korc_fields use korc_ppusher use korc_interp use korc_collisions use korc_initialize use korc_finalize use korc_profiles use korc_input #ifdef FIO use korc_fio #endif implicit none TYPE(KORC_PARAMS) :: params !! Contains the parameters that control the core of KORC: !! time steping, output list, etc. TYPE(SPECIES), DIMENSION(:), ALLOCATABLE :: spp !! Contains the initial parameters of each species, which !! can be different electrons with different !! distribution functions. TYPE(FIELDS) :: F !! F: Contains the parameters of the analytical magnetic !! and electric fields, or in the case of using !! external fields it contains the data used in the interpolations. !!See [[korc_fields(module)]] for details. TYPE(PROFILES) :: P !! P: Contains the parameters of the analytical plasma profiles, !! or in the case of using external !! fields it contains the data used in the interpolations. !! See [[korc_profiles(module)]] for details. INTEGER(ip) :: it !! Time iteration INTEGER :: mpierr call initialize_communications(params) !!<h2>Order of KORC operations</h2> !! !!<h3>Communication and Timing</h3> !! <h4>1\. Parallel Communications</h4> !! !! Subroutine [[initialize_communications]] in [[korc_hpc]] that !! initializes MPI and OpenMP communications. if (params%mpi_params%rank .EQ. 0) then flush(output_unit_write) end if call timing_KORC(params) !! <h4>2\. Timers</h4> !! !! Subroutine [[timing_KORC]] in [[korc_hpc]] that times the !! execution of any parallel sections of KORC. ! * * * INITIALIZATION STAGE * * *! if (params%mpi_params%rank .EQ. 0) then flush(output_unit_write) end if call initialize_HDF5() !!<h3>Initialization</h3> !! !! <h4>1\. HDF5</h4> !! !! Subroutine [[initialize_HDF5]] in [[korc_HDF5]] that initializes !! HDF5 library. if (params%mpi_params%rank .EQ. 0) then flush(output_unit_write) end if call initialize_korc_parameters(params) !! <h4>2\. Initialize korc parameters</h4> !! !! Subroutine [[initialize_korc_parameters]] in [[korc_initialize]] that !! initializes paths and KORC parameters through [[load_korc_params]] !! on MPI processes. if (params%mpi_params%rank .EQ. 0) then flush(output_unit_write) end if call initialize_fields(params,F) !! <h4>3\. Initialize fields</h4> !! !! Subroutine [[initialize_fields]] in [[korc_fields]] that initializes !! parameters of the EM fields, either analytically or from an external HDF5 !! file. Reads in &analytical_fields_params and !! &externalPlasmaModel namelists from input file. if (params%mpi_params%rank .EQ. 0) then flush(output_unit_write) end if call initialize_profiles(params,P,F) !! <h4>4\. Initialize Profiles</h4> !! !! Subroutine [[initialize_profiles]] in [[korc_profiles]] that initializes !! parameters of the plasma profiles, either analytically or from an !! external HDF5 !! file. Reads in &plasmaProfiles namelist from input file. !! Only initialized if collisions (params%collisions==T) are if (params%mpi_params%rank .EQ. 0) then flush(output_unit_write) end if call initialize_particles(params,F,P,spp) ! Initialize particles !! <h4>5\. Initialize Particle Velocity Phase Space</h4> !! !! Subroutine [[initialize_particles]] in [[korc_initialize]] that !! initializes particle parameters from &lasma_species namelist, !! allocates arrays for individual particles, including location, velocity, !! local EM fields and plasma profiles, etc., and !! calls [[initial_energy_pitch_dist]] to assign particles' energy and pitch !! angle according to the chosen distribution. ! write(output_unit_write,'("init eta: ",E17.10)') spp(1)%vars%eta #ifdef FIO if (TRIM(params%field_model) .eq. 'M3D_C1') then if (params%mpi_params%rank .EQ. 0) then write(output_unit_write,*) "* * * * INITIALIZING M3D-C1 INTERFACE * * * *" endif call initialize_m3d_c1(params, F, P, spp,.true.) if (params%mpi_params%rank .EQ. 0) then write(output_unit_write,*) "* * * * * * * * * * * * * * * * * * * * * * *" endif elseif (TRIM(params%field_model) .eq. 'NIMROD') THEN if (params%mpi_params%rank .EQ. 0) then write(output_unit_write,*) "* * * * INITIALIZING NIMROD INTERFACE * * * *" endif call initialize_nimrod(params, F, P, spp,.true.) if (params%mpi_params%rank .EQ. 0) then write(output_unit_write,*) "* * * * * * * * * * * * * * * * * * * * * * *" endif endif #endif if (params%mpi_params%rank .EQ. 0) then flush(output_unit_write) end if call compute_charcs_plasma_params(params,spp,F) !! <h4>9\. Compute Characteristic Plasma Parameters</h4> !! !! Subroutine [[compute_charcs_plasma_params]] in [[korc_units]] calculates !! the characteristic plasma parameters params%cpp that are used for normalizations. !! Also finds the maximum non-relativistic and relativistic cyclotron frequencies !! to be used for setting the timstep for the time-evolution algorithms. call initialize_collision_params(params,spp,P,F,.true.) !! <h4>6\. Initialize Collision Parameters</h4> !! !! Subroutine [[initialize_collision_params]] in [[korc_collisions]] that !! initializes collision parameters for the SS (single-species) and MS !! (multiple-species) data types, reading in namefiles from the KORC input file. !! MS reads in namelist &CollisionParamsMultipleSpecies while SS reads in !! namelist &CollisionParamsSingleSpecies. call define_time_step(params,F) !! <h4>10\. Define Time Step</h4> !! !! Subroutine [[define_time_step]] in [[korc_initialize]] either loads !! time-stepping parameters for a restart, or defines new parameters based !! on a maximum timestep !! set by the inverse of the relativistic cyclotron frequency. if (params%mpi_params%rank .EQ. 0) then flush(output_unit_write) end if call initialize_particle_pusher(params) !! <h4>11\. Initialize Particle Pusher</h4> if (params%SC_E) then call define_SC_time_step(params,F) end if call normalize_variables(params,spp,F,P) !! <h4>12\. Normalize Variables</h4> !! !! Subroutine [[normalize_variables]] in [[korc_units]] normalizes !! variables consistent with characteristic plasma parameters !! calculated in [[compute_charcs_plasma_params]]. call normalize_collisions_params(params) !! <h4>13\. Normalize Collision Parameters </h4> !! !! Subroutine [[normalize_collisions_params]] in [[korc_collisions]] that !! normalizes collision parameters for the SS (single-species) and MS !! (multiple-species) data types. call define_collisions_time_step(params,F,.true.) !! <h4>14\. Define Collision Time Step</h4> !! !! Subroutine [[define_collisions_time_step]] in [[korc_collisions]] that !! sets subcycling iteration number for collisions based off of the collision !! frequency model used. ! *** *** *** *** *** *** *** *** *** *** *** *** *** ! *** BEYOND THIS POINT VARIABLES ARE DIMENSIONLESS *** ! *** *** *** *** *** *** *** *** *** *** *** *** *** if (params%mpi_params%rank .EQ. 0) then flush(output_unit_write) end if #ifdef PSPLINE call initialize_fields_interpolant(params,F) !! <h4>15\. Initialize Fields Interpolant</h4> !! !! Subroutine [[initialize_fields_interpolant]] in [[korc_interp]] calls !! EZspline !! subroutines EZspline_init for memory allocation and boundary condition !! setup !! and EZspline_setup to compute the necessary cubic coefficients needed !! for subsequent !! field interpolations. The magnetic field can be defined in terms of an !! axisymmetric !! scalar flux function, axisymmetric field, or 3D field, while the !! electric field !! can be defined as an axisymmetric or 3D field. if (params%mpi_params%rank .EQ. 0) then flush(output_unit_write) end if call initialize_profiles_interpolant(params,P) #endif !! <h4>16\. Initialize Profiles Interpolant</h4> !! !! Subroutine [[initialize_profiles_interpolant]] in [[korc_interp]] !! calls EZspline !! subroutines EZlinear_init for axisymmetric (flux-surface quantities) or !! EZspline_init for 3D profiles for memory allocation and boundary !! condition setup !! and EZspline_setup to compute the necessary cubic coefficients needed !! for subsequent !! field interpolations. !! Only initialized if collisions (params%collisions==T) are present for !! ne, Te, Zeff if (params%mpi_params%rank .EQ. 0) then flush(output_unit_write) end if if (params%mpi_params%rank .EQ. 0) then write(output_unit_write,'("* * * * INITIALIZING INITIAL CONDITIONS * * * *",/)') flush(output_unit_write) end if call set_up_particles_ic(params,F,spp,P) if (params%mpi_params%rank .EQ. 0) then write(output_unit_write,'("* * * * * * * * * * * * * * * * * * * * * * * *",/)') flush(output_unit_write) end if !write(6,*) 'V',spp(1)%vars%V ! write(output_unit_write,'("post ic eta: ",E17.10)') spp(1)%vars%eta !! <h4>17\. Set Particle Initial Conditions</h4> !! !! Subroutine [[set_up_particles_ic]] in [[korc_initialize]] calls !! subroutines to prescribe initial conditions or load them !! from file for a restart. Initial spatial values are prescribed with !! [[intitial_spatial_distribution]] in [[korc_spatial_distribution]] and !! initial velocity values are prescribed with [[initial_gyro_distribution]] !! in [[korc_velocity_distribution]]. ! if (minval(spp(1)%vars%Y(:,1)).lt.1._rp/params%cpp%length) stop 'error with init' ! * * * INITIALIZATION STAGE * * * if (params%mpi_params%rank .EQ. 0) then flush(output_unit_write) end if ! write(output_unit_write,'("GC init eta: ",E17.10)') spp(1)%vars%eta if (.NOT.(params%restart.OR.params%proceed.or.params%reinit)) then if (params%orbit_model(1:2).eq.'FO') then call FO_init(params,F,spp,.true.,.false.) else if (params%orbit_model(1:2).eq.'GC') then call GC_init(params,F,spp) end if if (params%SC_E) then if (params%field_model(1:1).eq.'A') then call init_SC_E1D(params,F,spp(1)) else if (params%field_model(1:1).eq.'E') then call init_SC_E1D_FS(params,F,spp(1)) end if end if else call get_fields(params,spp(1)%vars,F) if (params%SC_E) then if (params%field_model(1:1).eq.'A') then call reinit_SC_E1D(params,F) else if (params%field_model(1:1).eq.'E') then call reinit_SC_E1D_FS(params,F) end if end if end if !write(6,*) 'V',spp(1)%vars%V !write(6,*) 'eta',spp(1)%vars%eta ! write(6,*) '1Y_R',spp(1)%vars%Y(1:4,1)*params%cpp%length ! * * * SAVING INITIAL CONDITION AND VARIOUS SIMULATION PARAMETERS * * * ! call save_simulation_parameters(params,spp,F,P) call save_collision_params(params) !! <h4>18\. Save Simulation and Collision Parameters</h4> !! !! Subroutines [[save_simulation_parameters]] in [[korc_HDF5]] and !! [[save_collision_params]] in [[korc_collisions]] call !! subroutines to save simulation and collision parameters. if (.NOT.(params%restart.OR.params%proceed.or.params%reinit)) then call save_simulation_outputs(params,spp,F) ! Save initial condition call save_restart_variables(params,spp,F) end if ! * * * SAVING INITIAL CONDITION AND VARIOUS SIMULATION PARAMETERS * * * ! ! write(output_unit_write,'("pre ppusher loop eta: ",E17.10)') spp(1)%vars%eta call timing_KORC(params) if (params%mpi_params%rank .EQ. 0) then flush(output_unit_write) end if if (params%orbit_model(1:2).eq.'FO'.and.((params%field_model(1:3).eq.'ANA') & .or.(params%field_model(1:3).eq.'UNI'))) then call FO_init(params,F,spp,.false.,.true.) ! Initial half-time particle push do it=params%ito,params%t_steps,params%t_skip call adv_FOeqn_top(params,F,P,spp) params%time = params%init_time & +REAL(it-1_ip+params%t_skip,rp)*params%dt params%it = it-1_ip+params%t_skip call save_simulation_outputs(params,spp,F) call save_restart_variables(params,spp,F) end do end if #ifdef PSPLINE if (params%orbit_model(1:2).eq.'FO'.and.params%field_model(1:3).eq.'EXT' & .and..not.((params%field_model(10:13).eq.'MARS').or. & (params%field_model(10:14).eq.'AORSA'))) then call FO_init(params,F,spp,.false.,.true.) ! Initial half-time particle push do it=params%ito,params%t_steps,params%t_skip call adv_FOinterp_top(params,F,P,spp) params%time = params%init_time & +REAL(it-1_ip+params%t_skip,rp)*params%dt params%it = it-1_ip+params%t_skip call save_simulation_outputs(params,spp,F) call save_restart_variables(params,spp,F) end do end if #endif #ifdef FIO if (params%orbit_model(1:2).eq.'FO'.and. & (TRIM(params%field_model).eq.'M3D_C1'.or. & TRIM(params%field_model).eq.'NIMROD').and. & .not.F%ReInterp_2x1t) then call FO_init(params,F,spp,.false.,.true.) ! Initial half-time particle push do it=params%ito,params%t_steps,params%t_skip call adv_FOfio_top(params,F,P,spp) params%time = params%init_time & +REAL(it-1_ip+params%t_skip,rp)*params%dt params%it = it-1_ip+params%t_skip call save_simulation_outputs(params,spp,F) call save_restart_variables(params,spp,F) end do end if if (params%orbit_model(1:2).eq.'FO'.and. & (params%field_model.eq.'M3D_C1'.or. & TRIM(params%field_model).eq.'NIMROD') & .and.F%ReInterp_2x1t) then call FO_init(params,F,spp,.false.,.true.) ! Initial half-time particle push do it=F%ind0_2x1t,params%time_slice !write(6,*) it,F%ind0_2x1t if (it.gt.F%ind0_2x1t) then if (params%field_model.eq.'M3D_C1') then call initialize_m3d_c1(params, F, P, spp,.false.) else call initialize_nimrod(params, F, P, spp,.false.) end if if (params%collisions) then if (params%field_model.eq.'M3D_C1') then call initialize_m3d_c1_imp(params,F,P, & params%num_impurity_species,.false.) end if end if end if if (params%mpi_params%rank .EQ. 0) then write(output_unit_write,*) 'tskip',params%t_skip flush(output_unit_write) end if call adv_FOfio_top(params,F,P,spp) params%it = params%it+params%t_skip params%time = params%init_time & +REAL(params%it,rp)*params%dt call save_simulation_outputs(params,spp,F) call save_restart_variables(params,spp,F) F%ind_2x1t=F%ind_2x1t+1_ip if (params%mpi_params%rank .EQ. 0) then write(output_unit_write,*) 'KORC time ',params%time*params%cpp%time flush(output_unit_write) end if end do end if #endif #ifdef PSPLINE if (params%orbit_model(1:2).eq.'FO'.and. & params%field_model(10:13).eq.'MARS') then call FO_init(params,F,spp,.false.,.true.) ! Initial half-time particle push do it=params%ito,params%t_steps,params%t_skip call adv_FOinterp_mars_top(params,F,P,spp) params%time = params%init_time & +REAL(it-1_ip+params%t_skip,rp)*params%dt params%it = it-1_ip+params%t_skip call save_simulation_outputs(params,spp,F) call save_restart_variables(params,spp,F) end do end if if (params%orbit_model(1:2).eq.'FO'.and. & params%field_model(10:14).eq.'AORSA') then call FO_init(params,F,spp,.false.,.true.) ! Initial half-time particle push do it=params%ito,params%t_steps,params%t_skip call adv_FOinterp_aorsa_top(params,F,P,spp) params%time = params%init_time & +REAL(it-1_ip+params%t_skip,rp)*params%dt params%it = it-1_ip+params%t_skip call save_simulation_outputs(params,spp,F) call save_restart_variables(params,spp,F) end do end if #endif if (params%orbit_model(1:2).eq.'GC'.and.params%field_eval.eq.'eqn'.and..not.params%field_model.eq.'M3D_C1') then do it=params%ito,params%t_steps,params%t_skip*params%t_it_SC call adv_GCeqn_top(params,F,P,spp) params%time = params%init_time & +REAL(it-1_ip+params%t_skip*params%t_it_SC,rp)*params%dt params%it = it-1_ip+params%t_skip*params%t_it_SC call save_simulation_outputs(params,spp,F) call save_restart_variables(params,spp,F) if (params%mpi_params%rank .EQ. 0) then flush(output_unit_write) end if end do end if #ifdef PSPLINE if (params%orbit_model(1:2).eq.'GC'.and.params%field_eval.eq.'interp'.and. & F%axisymmetric_fields.and.params%field_model(10:12).eq.'PSI'.and. & params%SC_E.and..not.params%field_model.eq.'M3D_C1') then do it=params%ito,params%t_steps,params%t_skip call adv_GCinterp_psi_top_FS(params,spp,P,F) params%time = params%init_time & +REAL(it-1_ip+params%t_skip,rp)*params%dt params%it = it-1_ip+params%t_skip call save_simulation_outputs(params,spp,F) call save_restart_variables(params,spp,F) end do end if if (params%orbit_model(1:2).eq.'GC'.and.params%field_eval.eq.'interp'.and. & F%axisymmetric_fields.and.(params%field_model(10:12).eq.'PSI'.OR. & params%field_model(12:14).eq.'PSI').and. & (.not.params%SC_E).and.(.not.F%Dim2x1t).and..not.params%field_model.eq.'M3D_C1') then do it=params%ito,params%t_steps,params%t_skip call adv_GCinterp_psi_top(params,spp,P,F) params%time = params%init_time & +REAL(it-1_ip+params%t_skip,rp)*params%dt params%it = it-1_ip+params%t_skip call save_simulation_outputs(params,spp,F) call save_restart_variables(params,spp,F) end do end if if (params%orbit_model(1:2).eq.'GC'.and.params%field_eval.eq.'interp'.and. & F%axisymmetric_fields.and.(params%field_model(10:12).eq.'PSI'.OR. & params%field_model(12:14).eq.'PSI').and. & (.not.params%SC_E).and.F%Dim2x1t.and.(.not.F%ReInterp_2x1t).and..not.params%field_model.eq.'M3D_C1') then do it=params%ito,params%t_steps,params%t_skip call adv_GCinterp_psi2x1t_top(params,spp,P,F) params%time = params%init_time & +REAL(it-1_ip+params%t_skip,rp)*params%dt params%it = it-1_ip+params%t_skip call save_simulation_outputs(params,spp,F) call save_restart_variables(params,spp,F) end do end if if (params%orbit_model(1:2).eq.'GC'.and. & params%field_eval.eq.'interp'.and. & F%axisymmetric_fields.and. & (params%field_model(10:12).eq.'PSI'.OR. & params%field_model(12:14).eq.'PSI').and. & (.not.params%SC_E).and. & F%Dim2x1t.and.F%ReInterp_2x1t.and. & .not.params%field_model.eq.'M3D_C1') then if (params%mpi_params%rank .EQ. 0) then write(output_unit_write,*) 'initial 2x1t_ind time',F%X%PHI(F%ind_2x1t)*params%cpp%time flush(output_unit_write) end if do it=params%ito,params%t_steps,params%t_skip call adv_GCinterp_psiwE_top(params,spp,P,F) params%time = params%init_time & +REAL(it-1_ip+params%t_skip,rp)*params%dt params%it = it-1_ip+params%t_skip call save_simulation_outputs(params,spp,F) F%ind_2x1t=F%ind_2x1t+1_ip if (params%mpi_params%rank .EQ. 0) then write(output_unit_write,*) 'KORC time',params%time*params%cpp%time write(output_unit_write,*) '2x1t_ind time',F%X%PHI(F%ind_2x1t)*params%cpp%time end if call initialize_fields_interpolant(params,F) if (params%LargeCollisions) then call initialize_collision_params(params,spp,P,F,.false.) call define_collisions_time_step(params,F,.false.) end if call save_restart_variables(params,spp,F) if (params%mpi_params%rank .EQ. 0) then flush(output_unit_write) end if end do end if if (params%orbit_model(1:2).eq.'GC'.and.params%field_eval.eq.'interp'.and. & F%axisymmetric_fields.and.F%dBfield.and..not.params%field_model.eq.'M3D_C1') then do it=params%ito,params%t_steps,params%t_skip call adv_GCinterp_2DBdB_top(params,spp,P,F) params%time = params%init_time & +REAL(it-1_ip+params%t_skip,rp)*params%dt params%it = it-1_ip+params%t_skip call save_simulation_outputs(params,spp,F) call save_restart_variables(params,spp,F) end do end if if (params%orbit_model(1:2).eq.'GC'.and.params%field_eval.eq.'interp'.and. & F%axisymmetric_fields.and.(params%field_model(10:12).eq.'2DB'.or. & params%field_model(12:13).eq.'2D').and..not.(F%dBfield).and..not.params%field_model.eq.'M3D_C1') then do it=params%ito,params%t_steps,params%t_skip call adv_GCinterp_B2D_top(params,spp,P,F) params%time = params%init_time & +REAL(it-1_ip+params%t_skip,rp)*params%dt params%it = it-1_ip+params%t_skip call save_simulation_outputs(params,spp,F) call save_restart_variables(params,spp,F) end do end if if (params%orbit_model(1:2).eq.'GC'.and.params%field_eval.eq.'interp'.and. & .not.(F%axisymmetric_fields).and.(F%dBfield).and. & (params%field_model(10:14).eq.'3DBdB').and..not.params%field_model.eq.'M3D_C1') then do it=params%ito,params%t_steps,params%t_skip call adv_GCinterp_3DBdB_top(params,spp,P,F) params%time = params%init_time & +REAL(it-1_ip+params%t_skip,rp)*params%dt params%it = it-1_ip+params%t_skip call save_simulation_outputs(params,spp,F) call save_restart_variables(params,spp,F) end do end if if (params%orbit_model(1:2).eq.'GC'.and.params%field_eval.eq.'interp'.and. & .not.(F%axisymmetric_fields).and.(F%dBfield).and. & .not.(params%field_model(10:14).eq.'3DBdB').and..not.params%field_model.eq.'M3D_C1') then do it=params%ito,params%t_steps,params%t_skip call adv_GCinterp_3DBdB1_top(params,spp,P,F) params%time = params%init_time & +REAL(it-1_ip+params%t_skip,rp)*params%dt params%it = it-1_ip+params%t_skip call save_simulation_outputs(params,spp,F) call save_restart_variables(params,spp,F) end do end if if (params%orbit_model(1:2).eq.'GC'.and.params%field_eval.eq.'interp'.and. & .not.(F%axisymmetric_fields).and..not.(F%dBfield).and..not.params%field_model.eq.'M3D_C1') then do it=params%ito,params%t_steps,params%t_skip call adv_GCinterp_B_top(params,spp,P,F) params%time = params%init_time & +REAL(it-1_ip+params%t_skip,rp)*params%dt params%it = it-1_ip+params%t_skip call save_simulation_outputs(params,spp,F) call save_restart_variables(params,spp,F) end do end if #endif #ifdef FIO if (params%orbit_model(1:2).eq.'GC'.and.params%field_model.eq.'M3D_C1'.and. & .not.F%ReInterp_2x1t) then do it=params%ito,params%t_steps,params%t_skip call adv_GCinterp_fio_top(params,spp,P,F) params%time = params%init_time & +REAL(it-1_ip+params%t_skip*params%t_it_SC,rp)*params%dt params%it = it-1_ip+params%t_skip*params%t_it_SC call save_simulation_outputs(params,spp,F) call save_restart_variables(params,spp,F) if (params%mpi_params%rank .EQ. 0) then flush(output_unit_write) end if end do end if if (params%orbit_model(1:2).eq.'GC'.and.params%field_model.eq.'M3D_C1'.and. & F%ReInterp_2x1t) then do it=F%ind0_2x1t,params%time_slice ! write(6,*) it,F%ind0_2x1t if (it.gt.F%ind0_2x1t) then call initialize_m3d_c1(params, F, P, spp,.false.) if (params%collisions.or.params%radiation) then call initialize_m3d_c1_imp(params,F,P, & params%num_impurity_species,.false.) end if end if if (params%mpi_params%rank .EQ. 0) then write(output_unit_write,*) 'tskip',params%t_skip flush(output_unit_write) end if call adv_GCinterp_fio_top(params,spp,P,F) params%it = params%it+params%t_skip params%time = params%init_time & +REAL(params%it,rp)*params%dt call save_simulation_outputs(params,spp,F) call save_restart_variables(params,spp,F) !comment out for debugging only F%ind_2x1t=F%ind_2x1t+1_ip if (params%mpi_params%rank .EQ. 0) then write(output_unit_write,*) 'KORC time ',params%time*params%cpp%time flush(output_unit_write) end if end do end if #endif call timing_KORC(params) ! * * * FINALIZING SIMULATION * * * call finalize_HDF5() #ifdef PSPLINE call finalize_interpolants(params) #endif #ifdef FIO if (TRIM(params%field_model) .eq. 'M3D_C1'.or. & TRIM(params%field_model) .eq. 'NIMROD') then call finalize_FIO(params,F,P) end if #endif ! DEALLOCATION OF VARIABLES call deallocate_variables(params,F,P,spp) call deallocate_collisions_params(params) call finalize_communications(params) ! * * * FINALIZING SIMULATION * * * if (params%mpi_params%rank .EQ. 0) then write(output_unit_write,'("KORC ran successfully!")') close(output_unit_write) end if end program main